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Systematic errors between sets of isomorphous replacement and anomalous scattering data may in 
some cases be reduced by a technique of 'local scaling'. Methods are proposed which may be used to 
analyse a data set for significant systematic errors, and to determine whether or not 'local scaling' will 
be worth applying in a given situation. The proposed method also predicts the optimum number of 
reflections to be included in the determination of the local scale factors. The technique is illustrated by 
several examples including 'good' and 'bad' isomorphous-replacement data for e-chymotrypsin, and 
anomalous scattering data for the lysozyme from bacteriophage T4, and for cytochrome b562 from 
Escherichia coll. 

Introduction 

The success of the isomorphous replacement method in 
protein crystallography is well known. This technique, 
first exploited by Green, Ingram & Perutz (1954), and 
in some instances supplemented by the use of anom- 
alous scattering data, has been employed in virtually 
every macromolecular crystal structure determination 
to date. 

It is also well known that the successful application 
of both the isomorphous replacement and anomalous 
scattering techniques necessitates the measurement of 
small changes in structure amplitudes. Typically the 
magnitude of these differences is 5-25% of the 
average structure amplitude so that small systematic 
errors in either of the measurements being compared 
can lead to large relative errors in the difference be- 
tween them. 

The purpose of this communication is to suggest a 
simple method, which will be termed 'local scaling', by 
which systematic errors between sets of data may be 
detected and, insofar as possible, eliminated. This 
method was first developed and applied during the 
determination of the structure of ~-chymotrypsin 
(Matthews, Sigler, Henderson & Blow, 1967). 

Suppose that Ft and Fz are structure amplitudes 
taken from two sets of measurements which are to be 
compared. For example, Ft and Fz might correspond 
to structure amplitudes of a native protein and its 
heavy-atom isomorph or they might correspond to a 
Friedel-related pair of measurements for the heavy- 
atom derivative. We desire to obtain, as accurately as 
possible, the true difference between F1 and/72. 

* Present address. 

Now the measured values of F1 and F2 will differ 
from each other for a number of reasons which may 
be considered as a combination of (a) experimental 
error, both systematic and random, and (b) real dif- 
ferences, e.g., due to the presence or absence of heavy 
atoms. We will assume for the moment that all these 
contributions can be combined together and con- 
sidered as 'errors'. 

In the case of isomorphous replacement differences, 
the amplitudes F1 are measured from one crystal, F2 
from another and the two data sets are usually brought 
to a common scale by applying an overall scale factor 
and an overall exponential 'thermal factor' which is 
intended to compensate for different radiation damage 
in the crystals being compared. 

For anomalous scattering measurements made from 
the same crystal, the two sets of measurements F~ and 
F2 will be automatically on a common scale, although 
in the case of separate crystals, scaling of the two sets 
of measurements will again be necessary. 

In practice it is not uncommon to find that after 
applying the scale factor described above apparent 
systematic errors remain. For example, when meas- 
uring Friedel-related reflections from the same crystal 
it may be observed that in one region of reciprocal 
space the reflections F(h) tend to be consistently larger 
than F~) ,  while in another region of reciprocal space 
the opposite may be true. Obviously such systematic 
differences could be due to a number of causes such as 
absorption by the crystal and capillary, variations in 
the diffraction profile, non-uniformity of the X-ray 
beam, crystal or instrumental misalignment and so on. 

Having observed these apparently systematic trends 
during the study of several protein structures, we have 
attempted to minimize them by applying a 'local' 
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scale factor. If it is assumed that the systematic error is 
constant in a region of reciprocal space, then one can 
eliminate the error by defining a 'local' scale factor 
which is determined not from all the reflections, but 
from only those reflections in the 'local' region. Of 
course the price one pays for this procedure is that the 
'local' scale factor is determined from far fewer reflec- 
tions than the overall scale factor, and therefore has a 
larger statistical uncertainty. In other words the 
systematic error may be reduced, but another error is 
introduced in its place. The larger the local area, the 
smaller will be the probable error in the local scale 
factor, but the less responsive will the scale factor be to 
local errors. Obviously the problem is to decide 
whether local scaling will be worth while in a given 
situation, and if so what will be the optimum size of 
the local area from which the scale factors are to be 
determined. In the following section we outline a 
possible approach to this problem. For 'good' data, 
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Fig. 1. Distribution of the root-mean square isomorphous dif- 
ferences for the chloroplatinite derivative of 0c-chymotrypsin. 
The ranges of sin z 0/2' are as follows: (a) 0-0.01, (b) 0.01- 
0.02, (c) 0.02-0.03, (d) 0.03-0.04, (e) 0-04--0.05. 
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Fig. 2. Frequency distribution for the isomorphous differences 
plotted in Fig. l(e), i.e., 0.02_<sin 2 0]22<0.03. 

i.e. data free of systematic error, the application of 
local scaling is unnecessary and in fact undesirable, 
but in situations where, for one reason or another, it is 
necessary to use data which contain systematic errors, 
the application of local scaling can reduce the conse- 
quences of these errors. 

Theory 

(a) Determination of scale factors 
It may be noted at the outset that the determination 

of scaling factors between overlapping sets of data is a 
non-trivial problem which has been discussed with 
increasing sophistication by a number of authors 
(Kraut, 1958; Dickerson, 1959; Rollett & Sparks, 
1960; Hamilton, Rollett & Sparks, 1965; Fox & 
Holmes, 1966). In the present context a local scale 
factor is desired for each reflection so that rapidity of 
calculation is essential. We have therefore adopted a 
somewhat simplified approach which is physically 
reasonable and which leads to simple (non-iterative) 
expressions for the local scale factors and for their 
probable errors. The criterion we have adopted is that 
the local scale factor K should minimize the sum 

~[t= ~ W (K-1 F2(h)) 2 
Fx(h) (1) 

where the summation is over the reflections in the 
'local area'. In the present context Fl(h) and F2(h) will 
be considered as structure amplitudes, although they 
could equally well be regarded as intensities. Hereafter 
we shall omit the subscripts h, and denote the inverse 
scale factor K -1 by Q (=  1/K). 

Setting the derivative of (1) with respect to Q equal 
to zero, one immediately obtains 

F2 Q= Z w w (2) 

or in other words Q is simply the weighted mean of 
(F2/FI). 

The standard error in Q is given by 
t/,,' 1/2 

a(Q)= [ ( n - 1 ) ~ w ]  (3) 

One can now consider the form of the expression for 
the local scale factor for some typical error distribu- 
tions in the structure amplitudes. 

Rather than considering the probable error in FJF1 
it is more convenient to think of the error in F~ or F2. 
Plots of the average isomorphous difference (Fz-FO 
for a number of derivatives suggest that at a given 
Bragg angle the average difference is approximately 
independent of the magnitude of F~. This is illustrated 
for the chloroplatinite derivative of a-chymotrypsin 
in Fig. 1. The average difference tends to increase for 
the very strong reflections, but since these are few in 
number and perhaps less reliably measured, they are 
usually not used for scaling. The distribution of the 
differences is very close to Gaussian (Fig. 2). 

A C 3 1 A  - 6 
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Making the simplifying assumption that the native 
amplitudes F~ are error free, and that all the error 
resides in Fz, then if a(Ft)= 0 and a(F2)= c, a constant, 
as suggested by Fig. 1, 

1 F~ 
W . . . . . . .  (4) aZ(F2/FO c 2 

which leads to 

Also 
Q = ~ F1F2/~, F~. (5) 

a(Q)={ ~,(QF1- F2)Z }I/z 
(n -1 )  Y. F~ (6) 

= { ~  Q2F~- 2Q ~, FIF2 + 
~ : - I )  ~-F~ F~} ~/2 " (7) 

Using (5) and (7), both Q and a(Q) can be evaluated 
directly from sums of the products F12, F~ and F1F2. 
Since Q is always close to unity, a(Q)~-a(K). 

Equations (5) and (7) were obtained on the assump- 
tion that the 'error' in Fz-F~ was independent of the 
magnitude of F1. If, in a given instance, this assump- 
tion is unrealistic then suitably modified weighting 
factors should be substituted in (2) and (3). 

Two special cases may be worth comment; the first 
is that in which the error in (F2- F~) is proportional to 
the amplitude F~, and the second is that in which the 
error is proportional to ]/'ff~. Again assuming all the 
error to lie in F2, and F~ to be error-flee, the error 
distribution a(F2)ocF1 leads to 

Q = [ ~  (F2/FI)]/n. (8) 

This scale-factor equation has a similar form to that 
proposed by Kraut (1958), and has the property that 
it gives high weight to the weak reflections. The 
second special case, a(F2)ocl/~ leads to 

Q= ~, F2/~ F~ , (9) 

an equation similar to that proposed by Dickerson 
(1959). In cases where the large amplitudes have large 
uncertainties, one might consider using (9) in pref- 
erence to (5), although another alternative is to retain 
(5), but to omit from the respective summations the 
very strong structure amplitudes. 

It should be emphasized that the theory presented 
above for the determination of scale factors is in no 
way intended as a substitute for the more general 
treatment of, for example, Hamilton, Rollett & Sparks 
(1965). Rather, the intent here is to outline an approx- 
imate treatment which leads to simple equations for 
the scale factors and their standard errors, and which 
takes into account in a reasonable way the errors in 
the data. 

(b) Choice of local area 
Having obtained suitable equations which allow the 

estimation of the local scale factors K and their prob- 
able errors a(K), we now consider the choice of the 
size of the local area, or, in other words, the number of 

reflections on which each local scale factor is to be 
based. 

If two sets of data have been scaled together by an 
overall scale factor, and local scale factors determined 
subsequently, then ( K - 1 ) ,  the r.m.s, value of (K-1 )  
for all reflections (i.e., for all local scale factors), gives 
the average fluctuation of the local scale factor. 

We will write 
( A K ) =  ( K -  17. (10) 

Now (AK) will differ from zero for a combination 
of two reasons, firstly because of systematic variations 
in K from unity, and secondly because of errors in K 
due to random errors in the structure amplitudes, and 
the finite number of observations on which the calcula- 
tion of K is based. The random error for each local 
scale factor is given by (3) or (7), and by averaging 
over all the a(K) one can obtain an estimate of the 
average random error, denoted G(K). 

Thus if we write 

(AXs>= { (AK>2-a(K) 2} i/z (11) 

then (AKs) can be considered as the average systema- 
tic variation in the local scale factor. 

If (dKs) exceeds a(K), i.e., the average systematic 
variation in the local scale factor exceeds the average 
error in the estimation of the local scale factor, then it 
can be concluded that local scaling is worth applying. 
Furthermore we postulate that the optimum local 
scaling area is that for which (AK~) exceeds a(K) by 
the greatest amount. If (AK~) should be less than 
a(k)  for a given set of data, then it can be predicted 
that local scaling is not worth applying. 

The tests of these ideas in some actual cases are 
described in the following sections. 

Tests of the method 

The effectiveness of local scaling has been tested in a 
number of different situations, three of which will be 
reported here. The first test uses isomorphous replace- 
ment data for a centrosymmetric projection of c~- 
chymotrypsin, the second test is for anomalous scat- 
tering data for the lysozyme from bacteriophage T4, 
and the third test utilizes anomalous scattering data 
for cytochrome b562. 

(a) (hOl) Projection data for ~t-chymotrypsin 
Reaction of crystals of the serine proteases with 

suitable sulfonyl fluorides has in several instances 
provided excellent isomorphous heavy-atom deriva- 
tives. In the case of u-chymotrypsin, space group P21, 
a=49.1 A, b=67.4 A, c=65.9 A, fl= 101.8 °, reaction 
with toluene sulfonyl fluoride and p-iodosulfonyl flu- 
oride yielded the isomorphous pair tosyl- and pipsyl-~- 
chymotrypsin which differ only in the substitution of 
iodine for methyl at two sites per asymmetric unit 
(Sigler, Jeffery, Matthews & Blow, 1966). Since tosyl- 
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and pipsyl-e-chymotrypsin are by all the usual criteria 
highly isomorphous, with no secondary sites of sub- 
stitution, they are very suitable as a test case. 

In the present context, data from three (hOl) preces- 
sion photographs (/z= 17 °) were used. The first and 
second films were 'standard' photographs of tosyl- and 
pipsyl-a-chymotrypsin, while the third was a 'bad' film 
in which the layer-line screen was slightly mis-set in 
order to introduce a typical systematic error in the 
data. All films were measured with the automatic 
densitometer described by Arndt, Crowther & Mallett 
(1968). 

The two pipsyl data sets were first scaled to the tosyl 
data in the usual way using an overall scale and 
temperature factor. Then the pipsyl data were scaled 
to the tosyl data using the local scaling procedure 
described in the previous section. In a series of tests 
the size of the 'local area' was varied, and the results 
were compared by calculating difference Fourier maps 
of pipsyl minus tosyl-a-chymotrypsin, and evaluating 
the peak-to-background ratio. In addition to the local 
scale factor, the mean correction (AK), the mean 

scaling factor error a(K) and the average systematic 
variation in the local scale factors, (AKs) [equation 
(11)], were also determined. The results for both the 
'good' and 'bad' pipsyl films are summarized in Table 
1. The peak-to-background ratio is defined as the ratio 
of the mean iodine peak height to the mean of the ten 
highest noise peaks in the (hOl) difference map. 

In the case of the 'bad' film it is clear that local 
scaling was worth while since the peak-to-background 
ratio increased from 4.47 to 4.80, a 7 % improvement. 
Furthermore the value of 4-80 is almost as high as was 
obtained with a 'good' film. 

For both the 'good' and 'bad' films the average error 
in the local scale factor decreases with the size of the 
local area, although for the same size area the error is 
only marginally less for the 'good' film. On the other 
hand (AK~), the average systematic component of the 
local scale factor, is much larger for the 'bad' than for 

the 'good' film. For the bad film (AK~) exceeds a(K) 
by the greatest amount for local scale factors based on 
8 x 8 to 15 x 15 boxes of reflections, and it is for the 
same raster sizes that the peak-to-background ratio 
has its highest values. In contrast, for the 'good' film 
(AKs) is always less than the error a(K) and, as is 
expected, local scaling always reduces the peak-to- 
background ratio, although local scaling with a 15 x 15 
raster does little harm. 

In these and other tests, local scale factors for re- 
flections toward the inner or outer edge of the film 
were calculated using a 'local region' centered on each 
reflection and including the observed reflections within 
this area. In cases where the number of observed reflec- 
tions in the 'local area' was less than say 40 % of the 
theoretical maximum, no local scale factor was cal- 
culated. 

(b) Friedel differences for T4 phage lvsozyme 
The lysozyme from bacteriophage T4 crystallizes in 

space group P3221 with cell dimensions a=b= 61.1 A, 
c=96.3 A (Matthews, Dahkluist & Maynard, 1963; 
Matthews & Remington, 1974). Conventional preces- 
sion photographs of the reciprocal-lattice levels hNlcon- 
tain pairs of reflections which are symmetry-equivalent, 
whereas the planes of the form (h,h-N,l) contain 
pairs of Friedel-related reflections. The latter case is 
the most favorable one for measurement of the small 
differences in intensity caused by the anomalous scat- 
tering of the heavy atoms, since most sources of error 
will tend to affect both reflections equally. Nevertheless 
an inspection of the amplitudes of Friedel-related re- 
flections, measured using a computer-controlled drum 
film scanner (Matthews, Klopfenstein & Colman, 
1972), suggested that a number of films seemed to be 
subject to significant systematic error. There were 
several factors which could have contributed to these 
apparent errors including the fact that the crystals 
were grown in the presence of concentrated phosphate 
solutions of rather high X-ray absorbance, and in order 

Table 1. Local scaling of pipsyl- vs. tosyl-c~-chymotrypsin 
T h e  p e a k - t o - b a c k g r o u n d  r a t i o  P/B a n d  the  o t h e r  s y m b o l s  a r e  de f ined  in the  text .  

Raster P/B (AK) (%) a(K) (%) (AK~) (%) 
'Bad' (hOl) film 
4 x 4 4.28 7.9 5"6 5"7 
5 x 5 4.62 7.0 4"4 5.4 
6 x 6 4.74 6.7 3.9 5-4 
8 x 8 4.79 6-2 3.1 5.3 

10 x 10 4.80 5.7 2"6 5.1 
13 x 13 4.79 4.9 2.1 4.5 
15 x 15 4.80 3"9 1.6 3"5 
20 x 20 4.75 3.6 1"5 3.3 
30 x 30 4.68 2.5 1.1 2.2 
oo 4"47 - - - 

'Good' (hOl) film 
8 × 8 4"70 3-2 2-7 1"6 

10 × 10 4"68 2"7 2"3 1"4 
15 × 15 4-81 2"1 1"6 1"3 
oo 4"82 - - - 

[(AK~)- a(K)] (%) 

0.1 
1-0 
1-5 
2.2 
2.5 
2.4 
1.9 
1.8 
1.1 

-1.1 
-0.9 
-0.3 

A C 31A - 6* 
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to obtain sufficiently intense exposures within the life 
of  the crystal, it was necessary to use crystals about  
0.6 m m  in each direction. Also, in order to obtain a 
sufficient number  of large crystals, it was on occasion 
necessary to use crystals which had slight cracks. 

Following the experience gained in the tests described 
in the previous section, the Friedel-related reflections 
were locally scaled to each other by comparing groups 
of reflections in one hal f  of  a film with the corre- 
sponding group of  reflections in the other hal f  of  the 
same film. The local scale factor K to be applied to 
F(h) was determined using equation (5), al though after 
local scaling both F0a) and KF(h) were multiplied by a 
constant so that their mean value did not change - in 
other words the isomorphous replacement difference 
between the derivative and the native protein was kept 
constant. 

Local scale factors were applied to the anomalous-  
scattering data for two heavy-atom derivatives, the 
first obtained by soaking the lysozyme crystals in solu- 
tions of  KzPtC14 and the second by soaking in HgCI2. 
These two derivatives subsequently sufficed for the 
initial determinat ion of the structure of the protein 
(Matthews & Remington,  1974). The local scale factor 
for each reflection was derived from neighboring reflec- 
tions contained in a 15 x 5 raster. This apparently 
asymmetric  shape simply reflects the fact that for the 
(h, h - N ,  l) planes the reflections are much more widely 
spaced in one direction than the other, and on the film 

itself the raster corresponds approximately to a box 
16 m m  square. 

A summary  of the local scaling statistics for each 
film is given in Table 2. It is immediately apparent  that 
a few films, notably (h, h - 3 ,  l) for the p la t inum deriva- 
tive, and (h, h -  1, l) for the mercury derivative, are rela- 
tively free of  systematic errors; however if the criteria 
described previously are any guide, then the data from 
most of  the films can be expected to be improved by 
local scaling. The apparent  systematic errors for the 
(h,h-3,l)  mercury film are particularly obvious, and 
in retrospect it could be argued that this film should 
have been re-taken. 

In Table 2 we have also included the mean Friedel 
difference ( F + - F _ >  before and after local scaling. 
As might be expected for the 'good'  films, the mean 
difference remains almost constant, whereas for the 
'bad '  films this quanti ty drops substantially due to 
partial  el imination of the 'systematic '  part  of  the dif- 
ference. For  comparison,  local scale factors based on a 
19 x 7 raster of  reflections were also calculated. The 
full data summary  i s  not given, but for comparison,  the 
values of  [(AKs>-a(K)] are included in Table 2. It 
would be expected that local scaling with a 19 x 7 
raster size would give results very similar to that for the 
15 x 5 raster. 

The procedure used to test the effect of  locally 
scaling the Friedel differences was somewhat different 
f rom that employed in the previous section, and was 

Table 2. Local scaling statistics for T4 phage lysozyme Friedel differences 

<AKs) <AK~) <F+ - F _ )  <F+ - F _ >  

<AK) (%) tr(K) (%) <zlKs) (%) -a(K) (%) - 0"(/() (%) Before After 
Film (15 × 5) (15 × 5) (15 x 5) (15 × 5) (19 × 7) local scaling local scaling 
Platinum derivative 
h, h - 1,1 4.8 0.9 4"7 3.8 3.8 43.5 30.5 
h,h-2,l 5"0 1"4 4"8 3"4 3"4 45"9 38"5 
h , h -  3,l 1"9 1"3 1'4 0"1 - 0"2 38"4 37"5 
h, h - 4,1 2.6 1 "6 2.0 0"4 -'0" 1 41 "2 40" 1 
h, h - 5, l 4"4 1" 1 4"3 3.2 3"0 36"2 32.8 

Mercury derivative 
h,h- 1,l 1.6 1"3 0.9 -0.4 -0.1 39-4 38-7 
h, h - 2, l 6"0 1.4 5.8 4"4 4.4 45.7 41-7 
h, h - 3, l 10.6 1"3 10.5 9.2 9-5 60-7 40-0 
h ,h -  4, l 6.8 1.7 6.6 4.9 4.9 57.4 45.5 
h, h -  5, l 4.7 1.5 4.5 3.0 2.6 44-1 42-8 

Table 3. Tests of phase angles derived from anomalous differences before and after local scaling 

The phase angles for the 'Hg-Nat' maps are derived exclusively from the anomalous scattering differences for the platinum 
derivative, before and after local scaling, and conversely for the 'Pt-Nat' maps. 

Before local scaling After local scaling 
Average Average 

Peak highest Peak highest 
Map Peak height background P/B height background P/B 

Hg-Nat Hgl 67 29.7 1.67 67 26.2 2-02 
Hg2 32 39 
Ptl 90 39.3 94 34.5 
Pt2 43 47 
Pt3 30 28 

Pt-Nat 1.38 1.63 
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intended to illustrate the effectiveness of the anomalous 
scattering data in phase determination, since this is the 
main purpose of measuring the Bijvoet differences. 
First the respective (h ,h -N , l )  films were merged 
together to obtain a quasi-three-dimensional data set 
to a nominal resolution of 2.5/k containing about 3400 
reflections, i.e. almost half of a full data set. Because 
of the relatively high symmetry of space group P3221, 
the data were reasonably well distributed through 
reciprocal space. Then, using just the Bijvoet pairs for 
the platinum derivative, protein phase angles were 
determined by what might be described as the 'single 
anomalous scattering method', in analogy to the single 
isomorphous replacement technique (Blow & Ross- 
mann, 1961). The characteristics of the single anom- 
alous scattering method have been discussed and 
illustrated previously (Matthews, 1969). The protein 
phase angles obtained by this procedure, although 
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Fig. 3. Section through the major mercury site in a mercury 
minus native difference map using partial data to 2.5 A 
resolution and phase angles determined from platinum 
anomalous differences. (a) Before local scaling of platinum 
data. (b) After local scaling. 

necessarily approximate, were then used to calculate a 
difference Fourier map with coefficients equal to the 
difference in structure amplitude between mercury 
and native phage lysozyme, and weighted by the figure 
of merit of the single platinum anomalous-scattering 
phase determination. Such a map is expected to show 
peaks at each of the mercury binding sites, and the 
peak-to-background ratio can be used as a measure 
of the quality of the anomalous scattering data used to 
determine the phase angles. In the present case two 
similar mercury minus native maps were calculated 
using the platinum phases determined before and after 
local scaling, and the results are smnmarized in Table 3. 
Subsequently the test was repeated in reverse, using the 
mercury anomalous data to determine phases, and then 
calculating platinum minus native difference maps. In 
the latter case peaks were expected at the three pla- 
tinum binding sites. Again the results are summarized 
in Table 3. 

In one comparison the peak-to-background ratio 
increased by 21% and in the other by 18 % as a result 
of local scaling. In both cases it appears that a signi- 
ficant improvement in the accuracy of the Bijvoet 
differences has been realized. Use of local scaling 
resulted in a slight increase in the average peak height 
(about 5%) but the main improvement manifests 
itself in the reduction of the highest noise peaks. A 
section through the major mercury site in the mercury 
minus native difference map is illustrated in Fig. 3. In 
this case the peak heights are the same, but comparison 
of both sections reveals that almost without exception 
every background feature has been reduced following 
the application of local scaling. 

It might be noted that the above tests presuppose 
the correct identification of the space group as P3221 
rather than P3121. In the enantiomorphic space group 
no peaks would be expected, and in fact the appearance 
of the expected peaks can be used as a method of re- 
solving the space-group ambiguity (cf Matthews, 1966; 
Colman, Jansonius & Matthews, 1972). 

(c) Friedel differences for cytochrome b56z 
In the previous two sections the test data were col- 

lected photographically. It is, of course, possible to 
apply local scaling to data collected by other tech- 
niques, and in this section we describe tests with diffrac- 
tion data collected using an automatic diffractometer. 

Ferricytochrome b56z from Escherichia coli crystal- 
lizes in a triclinic unit cell, a=33.7, b=50.5, c= 
32.7 A, ~ = 102.8 °,/3= 86-6 °, 7 = 106.7 ° with two mole- 
cules per unit cell (Czerwinski, Mathews, Hollenberg, 
Drickamer & Hager, 1972). Three-dimensional data 
to a resolution of 4.5 A were collected using a Picker 
FACS-1 automatic diffractometer. A modified Wyckoff 
step-scan procedure was used (Wyckoff et al., 1967; 
Mathews et al., 1972) and the data were corrected 
empirically for absorption, background and radiation 
damage (North, Phillips & Mathews, 1968; Czerwinski 
& Mathews, 1974). 
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Anomalous scattering differences were measured 
both for the native crystals, which contain two iron 
atoms per unit cell, and for a platinum derivative, and 
in both cases anomalous scattering difference Patterson 
syntheses with coefficients ( F + - F _ )  z were calculated 
(Rossmann, 1961). In these tests the approximately 
1200 Friedel pairs were locally scaled to each other by 
summing F 2 for a 5 x 5 x 5 block of reflections sur- 
rounding each reflection and its Friedel mate. The re- 
flection whose 'block sum' was the smaller of the two 
sums was scaled upward by the ratio of the two sums 
(Czerwinski & Mathews, 1974). This scaling procedure 
is analogous to that given by equation (9), replacing 
the amplitudes by intensities, and corresponds to the 
reasonable assumption that a(I) is proportional to I. 

The local scaling statistics and the results for the 
respective anomalous difference Patterson functions 
are summarized in Tables 4 and 5. In the case of the 
native data the expected iron-iron vector peak in- 
creased in height by about 10% and the background 
peaks decreased by about the same amount to give an 
improvement in the peak-to-background ratio of 15 %. 
In the case of the platinum data, the improvement 
resulting from local scaling was much more dramatic, 
amounting to a 36 % increase in peak height and an 
improvement in the peak-to-background ratio of 52 %. 
The dramatic improvement for the platinum derivative 
is also to be anticipated from the large value of 
(A Ks ) -a (K )  (Table 4). 

Table 4. Local scaling statistics for cytochrome b562 
Friedel differences 

. . . . . . . . . . . . .  

Derivative (AK) tr(K) (AK~) (AK~)-a(K) 
Native 0.025 0.0054 0.024 0.019 
Platinum 0.245 0.0173 0.244 0.227 

The success of the local scaling method for cyto- 
chrome bs6z can be attributed in part to the fact that 
the crystals were small, and, in the case of the platinum 
data, irregular in shape. For both these reasons, and 
also because of the triclinic unit cell, it was very diffi- 
cult to align the crystal accurately on the diffractom- 
eter, and to collect accurate data. 

It might be noted that the use of a 'local region' for 
diffractometer-collected data is appropriate for some 
types of errors, but not for others. For example errors 
due to X-ray absorption of the crystal, adhering mother 
liquor and the capillary generally change fairly con- 
tinuously through reciprocal space and tend to affect 

neighboring reflections in a similar manner. In cases 
such as this a 'local region' as used for cytochrome 
bs62 is appropriate. On the other hand, errors due to 
counting statistics, to overlapping of reflections, or to 
radiation streaks affect neighbouring reflections in 
quite different ways and will not be reduced by 'local 
scaling'. 

Discussion and conclusion 

The tests described here demonstrate that in a variety 
of cases the application of the principle of 'local 
scaling' can improve the accuracy of isomorphous 
replacement and anomalous scattering differences. 
However, it must be added that in a number of other 
tests the use of local scaling did not significantly change 
the apparent quality of the data. For example, in an 
extension of the tests described above for c~-chymo- 
trypsin, three-dimensional difference Fourier syntheses 
at 2.0 A resolution were calculated for tosyl- minus 
native-~-chymotrypsin, with and without the applica- 
tion of local scaling. In the locally scaled map the den- 
sity of the prominent peak due to the sulfonyl group 
and the average background density were almost 
exactly the same as the corresponding densities in the 
normally scaled difference map (Sigler, Blow, Matt- 
hews & Henderson, 1968). Thus, in this instance, local 
scaling caused no material improvement. 

In the case of e-chymotrypsin, large equi-dimen- 
sional crystals were readily available and it was 
possible to routinely obtain films which would be 
regarded as 'good' both by visual inspection and by a 
comparison of symmetry-related reflections (cf. Arndt 
et al., 1968; Matthews et al., 1972). Photo- 
graphs having obvious systematic errors were retaken. 
In cases such as this, local scaling was found to be of 
marginal benefit, and not worth applying, although it 
may be noted that in a number of tests it was never 
found that local scaling significantly decreased the 
quality of the data. 

On the other hand, one often has to deal with less 
favourable situations. For example, as was the case 
with bacteriophage T4 lysozyme, it was necessary to 
use large crystals in order to obtain sufficient intensity, 
yet such large crystals had severe absorption, and 
tended to be cracked. At the other extreme, for tyro. 
chrome b562 only small irregular crystals were available 
so that crystal alignment and accurate data collection 
were difficult. In other instances, crystal slippage, crys- 
tal or instrumental misalignment, non-uniformity of 

Map 
Native 
(F+ -- F_)2 
Platinum 
(F+ - F_)  2 

Table 5. Tests of  local scaling of Friedel differences.for cytochrome b562 

Before local scaling After local scaling 
Average Average 

Peak highest Peak highest 
Peak height background P/B height background P/B 

Fe-Fe 64.7 34.2 1.89 71-3 32.7 2.18 

Pt-Pt 36.9 38.6 0.96 50"0 34.4 1.45 
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the X-ray beam, anisotropic crystal mosaicity, radia- 
tion damage and other factors may cause systematic 
errors, and it is in situations such as these, where one is 
forced to be content with poorer data, that local scaling 
may be useful. 

Throughout this paper we have used 'local' to denote 
a local region in reciprocal space, but the general 
principle of 'local scaling' could be applied in the 
scaling together of any sets of reflections which are 
affected by a common systematic error. For example, 
one could use 'local scaling' to test whether a set of 
derivate amplitudes differed systematically from the 
corresponding native amplitudes as a function of re- 
flection intensity. In this case 'local' would refer to a 
(small) range of structure amplitude. In other situa- 
tions, 'local' might refer to a range of Bragg angle. 
Also, if one were scaling sets of sequentially measured 
reflections, then 'local scaling' could be applied to 
groups of reflections measured during a limited time 
span in order to minimize systematic errors due to 
radiation damage. 

Ideally one would like to be able to measure data 
free of all systematic errors, but in practice this is 
often impossible. As proteins of higher molecular 
weight crystallizing in larger unit cells are studied, it 
will become increasingly difficult to measure with 
accuracy the small isomorphous-replacement and 
anomalous-scattering differences. Fortunately, it is in 
just these situations, where the density of observations 
in reciprocal space becomes increasingly higher, that 
local scaling should work best. 
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